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bstract— Our main goal of this paper is to study secure communications via lag synchronization of chaotic complex nonlinear systems 
based on adaptive control theory. We try to transmit message from the transmitter system to the receiver system. The transmitted message 
is modulated into the parameter of the chaotic complex system which consider as the transmitter system. It is assumed that the parameter 
of the receiver system is unknown. Based on the adaptive control theory the controllers are designed to synchronize two identical chaotic 
complex Chen systems with unknown parameter as an example. Thus, the uncertain parameter of the receiver system is identified. The 
information signal of the message can be recovered accurately by the estimated parameter. The corresponding theoretical results and 
numerical simulations demonstrate the validity and feasibility of a secure communication via chaotic complex nonlinear systems based on 
adaptive control theory. 
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1 INTRODUCTION                                                                     
In engineering applications, time delay always exists. For ex-

ample, in the telephone communication system, the voice one 
hears on the receiver side at time t is the voice from the transmit-
ter side at time t− ( ≥ 0 and it is the lag time). There also ex-
ists time lag as the signal transmitted from the transmitter to the 
receiver end in chaos-communication. Many experimental inves-
tigations and computer simulations of chaos synchronization in 
unidirectional coupled external cavity semiconductor lasers [1-2] 
have demonstrated the presence of lag time between the drive and 
response lasers intensities. The similar experiments for chaotic 
circuits have also demonstrated the complete synchronization 
(CS), i.e., the states of two chaotic systems remain identical in 
the course of temporal evolution, is practically impossible for the 
presence of the signal transmission time and evolution time of 
response system itself [3]. 

Therefore, strictly speaking, it is not reasonable to require the 
response system to synchronize the drive system at exactly the 
same time. Lag synchronization (LS) means the state of the re-
sponse system at time t is asymptotically synchronous with the 
drive system at time t−, namely lim x( ) y( ) 0t t

τ
τ

→∞
− − = , where 

x(t) and y(t) are the states of the response and drive systems, re-
spectively. Thus, LS is more rigorous than CS in practice and CS 
is a special case of LS when  = 0. 

Since Fowler et al.[4] introduced the complex Lorenz equa-
tions, complex systems have played an important role in many 
branches of physics [5], especially for chaos-communication, 
where the complex variables (doubling the number of variables) 

increase the contents and security of the transmitted information 
[6]. The main idea of chaos communication is to utilize the chaot-
ic signals as carriers for information transmission, and at the re-
ceiver end chaos synchronization is employed to recover the in-
formation signal. Hence, the synchronization of complex chaotic 
systems [7-17] has attracted great attention in the last few dec-
ades. 

Emad E. Mahmoud et al. had investigated LS of hyperchaotic 
complex nonlinear systems based on active control [13] and pas-
sive control [3], respectively, but they did not applied it to secure 
communications. 

The purpose of secure communication is sending a message 
from transmitter to receiver through chaotic systems. In other 
words, the message is injected into chaotic systems, transmitted, 
and then detected and recovered by the receiver. Many types of 
secure communication schemes have been presented such as cha-
otic masking, chaotic switching, or chaotic shift keying and cha-
otic modulation. In chaotic masking, the message which we need 
to send it is added to a one of chaotic signal in order to hide it, 
then the signal is transmitted to the receiver. Under certain condi-
tions the message may be recovered at the receiver. In chaos shift 
keying, the message is supposed to be binary, and it is mapped 
into the transmitter and the receiver. In chaotic modulation, the 
message is injected into the states or the parameters of the chaotic 
system, or is modulated by using an invertible transformation 
thus the information signal can be recovered by a receiver if the 
transmitter and the receiver are synchronized [18-23]. 

Now there are a number of papers [18-22] about secure com-
munications based on real chaotic signal, while the secure com-
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munications based on complex chaotic systems has rarely been 
studied [23]. Especially, there is almost no paper about the secure 
communications considering time-delay or time lag based on LS. 
In fact, as the time lag of transmission, it is more suitable to 
adopt LS to describe the synchronization between the transmitter 
and the receiver. 

Complex Lorenz system is one of the most common complex 
chaotic systems, and has been used to describe a detuned laser, 
rotating fluids [5,24-25], disk dynamos [26], etc. Recently, nota-
bly the so-called complex Chen and Lü systems are thought to 
belong to the same class as the Lorenz equation [6,27-30] and 
have similar properties. Inspired by the above discussions, We 
consider the chaotic complex Chen system as an example of cha-
otic complex nonlinear systems to achieve this investigation. The 
message is modulated directly into the parameter of the chaotic 
complex Chen. The parameter of the receiver system is assumed 
to be unknown. The controllers and the parameter update rule are 
designed and theoretically analyzed based on adaptive control 
method (different from [3,13] and it is simpler than them).  

2 A CHAOTIC COMPLEX NONLINEAR SYSTEM 
A complex dynamical system is called chaotic if it is determin-

istic, has long-term a periodic behavior, and exhibits sensitive 
dependence on the initial conditions. A chaotic complex attractor 
is defined as a complex chaotic attractor with one positive Lya-
punov exponents. The sum of Lyapunov exponents must be nega-
tive to ensure that system is dissipative. It is even more compli-
cated than chaotic real systems and has more unstable manifolds. 
Due to chaotic complex systems with characteristics of high ca-
pacity, high security and high efficiency, it has a broadly applied 
potential in nonlinear circuits, secure communications, lasers, 
neural networks, biological systems and so on. Therefore, re-
search on chaotic complex nonlinear systems is extremely im-
portant nowadays [14]. 
Consider the chaotic complex nonlinear system as follow:                 

( ) ( ), (1)= +x x A f x& Φ  
where  1 2( , ,..., )T

nx x x=x  is a state complex vector,  
r j= + ix x x  ,  1 3 2 1( , ,..., )r T

nu u u −=x ,         2 4 2( , ,..., )i T
nu u u=x       

,  1,j = −    T   denotes transpose,  (x)Φ   is  n n×   complex 
matrix and the elements of this matrix are state complex varia-
bles,  A   is  1n×   vector of system parameters,  

1 2( , ,..., )T
nf f f=f     is a vector of linear or nonlinear complex 

functions and superscripts  r   and  i   stand for the real and im-
aginary parts of the state complex vector  x  . 
In this paper we study the definition of LS of two identical sys-
tems of the form (1) with known parameters by designing a con-
trol scheme.                                                                                                             

Remark 1. Most of chaotic complex system can be described 
by (1), such as complex Lorenz, Chen and Lü systems. 
In order to show the results of our scheme of two identical sys-
tems of the form (1) we choose, as an example, the chaotic com-
plex Chen systems which have been introduced and studied re-
cently in our work [6].                                                                                                             

 
The chaotic complex Chen system is: 

( ),
( ) , (2)
1 ( ) ,
2

x y x
y x xz y

z xy xy z

α

γ α γ

β

= −

= − − +

= + −

&

&

&

 

where 1 2 3( , , ) ( , , ) ,T Tx x x x y z= =x  , ,α β γ  are positive param-
eters,  1 2 3 4,x u ju y u ju= + = +   are complex functions, and  lu  

5( 1,..., 4),l z u= =   is real function. Dots represent derivatives 
with respect to time and an overbar denotes complex conjugate 
variables. The chaotic complex Chen system are a 5-dimensional 
continuous real autonomous system. System (2) has trivial and 
non-trivial fixed points. System (2) exhibits chaotic behavior 
when  42, 26α γ= =   and  4 6,β< <   for more detail see  [6]  . 
In [6] we calculated numerically, by using the Lyapunov expo-
nents, the parameters values at which these chaotic attractors 
exist see Fig. 1. 

In this system the main variables participating in the dynamics 
are complex. Clearly, if the variables of the system are complex 
the equations involve twice as many variables and control param-
eters, thus making it that much harder for a hostile agent to inter-
cept and decipher the coded message. System (2) is used to de-
scribe and simulate the physics of detuned lasers and thermal 
convection of liquid flows. 

 
Fig. 1: Chaotic attractors of chaotic complex Chen system in 

some plans. 
 

3 A SCHEME FOR DESIGN A COMPLEX CONTROL-
LER OF ADAPTIVE LS 

We consider two non-identical chaotic complex nonlinear sys-
tems of the form (1), one is the master system (we denote the 
master system with the subscript m)  as:                                                                          

( ) ( ), (3)r i
m m m m mj= + = +x x x x A f x& & & Φ  

and the second is the controlled slave system (with subscript s 
) as:  

( ) ( ) , (4)r i
s s s s sj= + = + +y y y y B g y L& & & Ψ  

where the additive complex controller 
1 2( , ,..., )T r i

nL L L j+L L L= =  , 1 3 2 1( , ,..., )r T
nv v v −L = , 

2 4 2( , ,..., )i T
nv v vL = .                                                      
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Definition. Two complex dynamical systems coupled in a mas-
ter-slave configuration can exhibit LS if there exists a vector of 
the complex error function  δ   define such as:                                                                              

lim ( ) ( ) , (5)r i
s mt

j t t τ
→∞

+ = − − =y x 0δ δ δ=  

where 1 2( , ,..., )T
nδ δ δ=δ , ( )m tx  and ( )s ty   are the state 

complex vectors of the master and slave systems, respectively, 
lim ( ) ( ) 0r r r

s mt
t t τ

→∞
= − − =y xδ and lim ( ) ( ) 0i i i

s mt
t t τ

→∞
= − − =y xδ

,
1 3 2 1

( , ,..., ) ,
n

r T
u u uδ δ δ

−
=δ

2 4 2
( , ,..., )

n

i T
u u uδ δ δ=δ  , and  τ   is the 

positive time lag.                                   
Remark 2. When  0τ =   in Eq.(5) we define compelet syn-

chronization between systems (3) and (4).                                          
Remark 3. If we define  lim ( ) ( )s mt

t t τ
→∞

+ −y xδ =   and  

0τ =   we get CS of systems (3) and (4), while if  0τ >   we ob-
tain anti lag synchronization of the same systems.                                                        

Theorem 1. If nonlinear controller is designed as:                                         
ˆˆ( ) ( ) ( ) ( )

ˆˆ( ) ( ) ( ) ( ) (6)

ˆˆ[ ( ) ( ) ( ) ( ) ],

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r i
s s m m

r r r r r
s s m m

i i i i i
s s m m

j

j

t t t t

t t t t

t t t t

τ τ

τ τ

τ τ

= + = − − − −

= − − − −

+ − − − −

− −

− −

− −

L L L y B y x A x K

y B y x A x K

y B y x A x K

Ψ Φ δ

Ψ Φ δ

Ψ Φ δ

−

−

−

g f

g f

g f

 

and the adaptive laws of parameters are selected as:                                       
.

.

ˆ ( ( ( ))) ( ( ( ))) ,          
(7)

ˆ ( ( ( ))) ( ( ( ))) ,

r T r i T i
s s

r T r i T i
m m

t t

t tτ τ


= −


 = − − −

B y y B

A x x A

%

%

Ψ δ Ψ δ Λ

Φ δ Φ δ Λ

+

+

 

 then the slave system (4) lag synchronize the master system 

(3) asymptotically, where  K =diagk 1 , k 2 , . . . ,k n,
Λ =diagζ1 ,ζ2 , . . . ,ζn,    ,lk    lζ   are positive constants ,    

1, 2,...,l n=  . The parameters of vectors  Â   and  B̂   are the 
parameters estimation of vectors  A   and  B   respectively,  

ˆ=A A A% −   and  ˆB B B% = −  .                                                                            
Proof: From the definition of ALS:                                                            

( ) ( ). (8)r i
s mj t t τ= + −y xδ δ δ= +  

So,                                                                                                                     
( ) ( )

( ) ( ) [ ( ) ( )]. (9)

r i
s m

r r i i
s m s m

j t t

t t j t t

τ

τ τ

= + −

= + − + + −

y x

y x y x

& & & & &

& & & &

δ δ δ= +
 

From chaotic complex systems (3) and (4), we get the error 
complex dynamical system as follows:                                                                      

( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( ) ]. (10)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r i r r r r r
s s m m

i i i i i
s s m m

j

j

t t t t

t t t t

τ τ

τ τ

= + + +

+ + + + +

− −

− −

y B y x A x L

y B y x A x L

& & &δ δ δ Ψ Φ

Ψ Φ

= + +g f

g f

 
Thus, substituting from equation (6) about  ,rL    iL   in (10) 

we obtain: 
ˆˆ( ( ))( ) ( ( ))( )

ˆˆ[ ( ( ))( ) ( ( ))( ) ], (11)

r i r r r
s m

i i i
s m

j t t

j t t

τ

τ

= −

+ −

y B B x A A K

y B B x A A K

& & &δ δ δ Ψ Φ δ

Ψ Φ δ

= + − + − −

− + − −

 

where vectors of the parameters errors are defined as  
ˆ ,=A A A% −    ˆB B B% = −  . By separating the real and the imagi-

nary parts in Eq. (11), the error complex system is written as:                                            
ˆˆ( ( ))( ) ( ( ))( ) ,

(12)
ˆˆ( ( ))( ) ( ( ))( ) .

r r r r
s m

i i i i
s m

t t

t t

τ

τ

 = −


= −

y B B x A A K

y B B x A A K

&

&

δ Ψ Φ δ

δ Ψ Φ δ

− + − −

− + − −
 

For positive parameters, we may now define a Lyapunov func-
tion for this system by the following positive definite quantity:                   

2 2

2 1 2

1
2

1
2

1 1

ˆ ˆ ˆ ˆ( ) [( ) ( ) ( ) ( ) ( ) ( )]

. (13)
l l

r T r i T i T T

n n
T T

u u
l l

V t

δ δ
−

= =

= + + +

 
= + + + 

 
∑ ∑

A A A A B B B B

A A B B% % % %

δ δ δ δ − − − −

 
Note now that the total time derivative of  ( )V t   along the tra-

jectory of the error system (12) is as follows:                                                         
. .

. .

( ) ( ) ( )

ˆˆ( ( ( ))( ) ( ( ))( ) ) (14)

ˆˆ( ( ( ))( ) ( ( ))( ) )

ˆ ˆ ,

r T r i T i T T

r r r T r
s m

i i i T i
s m

T T

V t

t t

t t

τ

τ

= + + +

= −

+ −

+ +

A A B B

y B B x A A K

y B B x A A K

A A B B

& & % %& % %

% %

δ δ δ δ

Ψ Φ δ δ

Ψ Φ δ δ

− + − −

− + − −

 

where  
. .
ˆ =A A%   and  

. .
ˆ =B B%  . By substituting from Eq. (7) 

about  
. .
ˆ ˆ,A B   in Eq. (14) we obtain:                                                                                     

( ) [ ( ( ))( ) ( ( ))( ) ]

[ ( ( ))( ) ( ( ))( ) ]

[( ( ( ))) ( ( ( ))) ]

[( ( ( ))) ( ( ( ))) ], (15)

[( ) ( ) ] (

r r r T r
s m

i i i T i
s m

T r T r i T i
s s

T r T r i T i
m m

r T r i T i T

V t t t

t t

t t

t t

τ

τ

τ τ

= −

+ −

+ + −

+ − + − −

= − + −

y B x A K

y B x A K

B y y B

A x x A

K K B

%& %

%%

% %

% %

%

Ψ Φ δ δ

Ψ Φ δ δ

Ψ δ Ψ δ

Φ δ Φ δ

δ δ δ δ

− + − −

− + − −

Λ

Λ

2 2

2 1 2
1 1

) ( ),

( ) ( ).
l l

T

n n
T T

l u l u
l l

k kδ δ
−

= =

−

 
= − + − − 

 
∑ ∑

B A A

B B A A

% %%

% %% %

Λ Λ

Λ Λ

 
Since  ( )V t   is a positive definite function and its derivative is 

negative definite, thus according to the well-known Lyapunov 
theorem, the complex error system (10) is asymptotically stable, 
which means that  

2luδ   and  
2 1luδ

−
  tend to zero as  t → ∞  ,  

1, 2,...,l n=  . Consequently, the states of the slave system and the 
master system will be globally anti-synchronized asymptotically 
with lag in time. This completes the proof.                                                                              

Remark 4. If systems (3) and (4) satisfy    (.) (.)Φ = Ψ    and  
(.) (.)=f g  , then the structure of system (3) and system (4) is 

identical. Therefore, our scheme is also applicable to achieve LS 
of two identical chaotic complex systems with uncertain parame-
ters.                                           

Remark 5. When systems (3) and (4) are identical  ,A B=   
and the adaptive laws of parameters are selected as: 
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. .
ˆ ˆ [( ( ( ))) ( ( ( ))) ]

[( ( ( ))) ( ( ( ))) ] . (16)

r T r T r
s m

i T i T i
s m

t t

t t

τ

τ

= + −

+ − −

A B y x

y x A%
Ψ Φ δ

Ψ Φ δ

=

+ Λ
 

Remark 6. When  ,i i i
m s= = =x y 0& & δ   our scheme is suitable to 

achieve LS of two identical or non-identical chaotic systems with  
real   variables Finally, our scheme is illustrated by applying it 
for two identical chaotic complex Chen systems in the rest of the 
work and make application to secure communications. 

 
4 NUMERICAL EXAMPLE 
Let us now investigate the LS of two identical hyperchaotic 

complex Chen systems with uncertain parameters as an example 
for Section 3. The master and the slave systems are thus defined, 
respectively, as follows: 

( )

( )

,
( ) , (17)
1/ 2 ,

m m m

m m m m m

m m m m m m

x y x
y x y x z
z x y x y z

ρ
ν ρ ν

µ

= −

= − + −

= + −

&

&

&

 

and  

( )

( )

.

1

.

2

.

3

,

( ) , (18)

1/ 2 ,

s s s

s s s s s

s s s s s s

x y x L

y x y x z L

z x y x y z L

ρ

ν ρ ν

µ

= − +

= − + − +

= + − +

 

where  1 1 2L v jv= +  , 2 3 4L v jv= +   and  3 5L v=   are complex 
and real control functions, respectively, which are to be deter-
mined. 
 

According to Theorem 1, the controller is designed as: 

( ) ( )1 1

2 1 2 2

3 3 4 3

ˆˆ( ( )) ( ( )) ( ( )) ( ( )) ,

( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) , (19)

ˆ ˆ( ) ( )

s s m m

s s m m

s m

s m

t t t t k

L y t x t y t x t k
L y t y t k
L z t z t k

τ τ

ρ ρ τ τ δ
ν α ν τ α δ
α µ α µ τ δ

= − − − − − −

− − − − − − −  
   = − + − − + −  

   − + − + − −   

L y B y x A xΨ Φ δ−g f

 
where  1 ( ) ( ),s sx t z tα =    2 ( ) ( ),m mx t z tα τ τ= − −    

( )1
3 2 ( ) ( ) ( ) ( ) ,s s s sx t y t x t y tα = +    

( )1
4 2 ( ) ( ) ( ) ( ) ,m m m mx t y t x t y tα τ τ τ τ= − − + − −   and  

( ) ( )
lu lm lsu t u tδ τ= − −  , 1,2,3,4,5,7.l =   

We can calculate the adaptive laws of parameters by using (16) 
as: 

3 1 1 4 2 2

2

3

2

5

.
.

. . .
2
4

.

ˆ ( ) ( )
ˆ ˆ ˆ . (20 )

ˆ

u u u u u u

u u

u

ρ δ δ δ δ δ δ ζ ρ

ν δ δ ζ ν

δ ζ µµ

 
   − + − −
  

= = + −  
    − −  

 

A B

%

%

%

=

 
To verify the feasibility of the proposed scheme, we discuss 

the simulation results of the LS between two identical hyper-
chaotic complex Lü systems (17) and (18). Systems (17) and (18) 

with the controller  (19)  are solved numerically, and the parame-
ters are chosen as  40,ρ =    4,µ =    22.ν =   The initial condi-
tion of the master system state vector, the initial value of the 
slave system state vector, the positive time lag  τ   and the diago-
nal constant matrices are taken as  
( (0), (0), (0), ) (1 2 ,3 4 ,5) ,T T

m m mx y z j j= + +    
( (0), (0), (0), ) (6 8 ,3 4 ,8) , 0.2T T

s s sx y z j j τ= + + =   and  
(12,15,11),diagK =    (6,9,10)diagΛ = . The initial values of 

estimate for unknown parameters vector are considered as  
ˆ ˆ ˆ( (0), (0), (0)) (2,3,4) .T Tρ ν µ =   The results are depicted in Fig-

ures 2, 3, 4. 
In Figure  2  the solutions of  17  and  18  are plotted subject to 
different initial conditions and show that LS is indeed with time 
lag  0.1.τ =   Figure 3 shows the numerical simulation of the 
error  

luδ  . Figure 4 shows that the estimated values of the un-

known parameters  ˆ( ),tρ    ˆ( ),tν    ˆ ( )tµ   converge to  40, 4, 22   
respectively. 

 
Fig.2: LS between systems (17), (18) via complex controller. 

 
Now we consider system (17) as transmitter system and system 

(18) as receiver system. For one thing, we choose arbitrarily the 
information signal as  ( ) 1 sin .r t t= +   Take  1( ) ( ) mr t r t u= +(   and 
suppose that  ( )r t(   is added to the variable  2 .mu   Numerical re-
sults of application to secure communication are shown in Figs. 
5. The information signal  ( )r t   and the transmitted signal  ( )r t(   
are shown in Fig. 5(a) and (b), respectively. The recovered in-
formation signal, which is denoted by  1 2( ) ( ) s sr t r t u u∗ = − −(  , is 
shown in Fig. 5(c). Fig. 5(d) displays the error signal between the 
original information signal and the recovered one. From Fig. 
5(d), it is easy to find that the information signal  ( )r t   is recov-
ered exactly after a very short transient. 
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Fig.3: LS errors of systems (17), (18). 

 

 
Fig.4: Adaptive parameters estimation laws versus � 

 

 
Fig.5: Simulation results of secure communication using LS of  

two identical chaotic complex Chen systems. 
 

 
 
5 CONCLUSION 
 In this paper we study LS of chaotic attractors of complex sys-

tems with uncertain parameters. A scheme is designed to achieve 
LS of two identical chaotic complex nonlinear systems with un-
certain parameters based on Lyapunov functions. Through this 
scheme we determined analytically the control complex functions 
and adaptive laws of parameters to achieve LS. The secure com-
munications by using LS in two chaotic complex Chen systems 
are implemented. 
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